Rehabilitation of the Cervical Spine

Cervical Spine Motor Control
- Those suffering with neck pain often display altered motor recruitment patterns at the cervical spine
- Over active superficial flexors and extensors inhibit deeper musculature
- Without stabilisation from the deep musculature faulty movement patterns occur, causing buckling stress through the spine and high work-loads of the superficial muscles
- Exercise protocols to retrain the motor control deficits of the cervical spine have shown significant improvements in those with neck pain, cervicogenic headaches and whiplash associated disorders.
- The muscles targeted as those that control cranio-cervical flexion and scapular stabilisation.

Cervical Flexion Test
- This is a quick screen to check for any muscular imbalance
- Poking forward of the chin would indicate poor motor control of the deep cervical flexors
- Shaking of the head would indicate reduced endurance of the cervical flexors (deep and superficial)

Cranio-cervical Flexion
- Gently and slowly nod the head as if saying “yes”. Hold for 5 seconds. Do NOT retract the cervical spine.
- Can be done in sitting
- Can be held for longer as a progression
- Can be broken into increments of nodding
- Can be held during cervical flexion and head being lifting off the bed- this can also be done eccentrically

Scapular Positioning- Lower Trapezius
- In prone position, palms facing the ceiling
- Pull shoulder blades back and down. Maintain scapular position and raise hands off bed
- Progression- palms facing the bed
- 90 degrees shoulder abduction
- 90 degrees shoulder abduction plus external rotation
- Plus Cranio cervical flexion AND cervical retraction
- 120 degrees abduction so humerus is in line with fibres of lower trapezius
Scapular Positioning - Serratus Anterior

- **Supine pushes** - With the client supine encourage shoulder protraction with the arm at 90 degrees of flexion. This will help the client understand the movement of the shoulder blade that is required.
- **Wall slides** - Forearms on a pillow against a wall. Protract and activate serratus anterior to prevent scapula winging. Ensure there is minimal upper trapezius activation. Maintaining a good scapulohumeral rhythm, with correct scapula upward rotation, slide the arms up the wall.
- **Push up plus** - Push ups with serratus anterior protraction at the end

(Ask et al., 2009; Falla et al., 2007; Jull et al., 2004; Jull et al., 2002; Jull, 2000; Jull et al., 2009)

Cervical Spine Strength and Endurance

- Due to faulty movement patterns the superficial flexor and extensors often show poor strength and endurance.
- Exercise programmes to retrain the strength and endurance of the superficial flexor and extensors and axialscapular musculature has also been shown to give benefits in those with neck complaints.

Upper Trapezius

- In 4 point kneeling maintain a neutral cervical spine with craniocervical flexion. Hold this position for 5-10 seconds. This encourages eccentric control of the upper trapezius.

(Ask et al., 2009; Ylinen et al., 2010; Ylinen et al., 2003)

Shoulder Girdle Stability/Motor Control and Shoulder Strength

- Many programmes have also incorporated exercises to regain shoulder girdle stability and shoulder strength.
- Authors have theorized that if the shoulder girdle is unstable cervical musculature will contract to act as prime movers for the cervical spine and stabilise the shoulder girdle.
- This again will lead to faulty movement patterns, mechanics and joint buckling with the majority of the superficial muscles being over worked.
- Scapular motor exercises should be used to encourage scapular upward rotation, external rotation and posterior tipping.

(Andersen et al., 2011; Cook, 2010; Sahrmann, 2010; Ylinen et al., 2007; Ylinen et al., 2003)

Kinesthetic Sense, Proprioception and Hand Eye Co-ordination

- Exercise programmes directed at retraining proprioception and hand eye co-ordination have demonstrated improvements in those with whiplash associated disorders.
- The mechanism of this is not yet fully understood.

(Jull et al., 2007; Madeleine et al., 2011; Revel et al., 1994)

